Official Project Webpage for paper "DiffSRL: Learning Dynamic-aware State Representation for Control via Differentiable Simulation"
cd ChamferDistancePytorch
python3 -m pip install -e .
cd ..
python3 -m pip install -e .
python3 -m plb.algorithms.solve --algo td3 --env_name [Chopsticks-v1/Rope-v1] --exp_name enjoy --model_name rope/encoder --render
python3 -m plb.algorithms.solve --algo torch_nn --env_name [Chopsticks-v1/Rope-v1] --exp_name enjoy --model_name rope/encoder --render
python3 -m plb.algorithms.solve --algo collect --env_name [EnvName-version] --exp_name [new_environment]
Which will collect raw data and stored in raw_data
folder.python3 preprocess.py --dir raw_data/[new_environment]
to pre-process data and the preprocessed npz file will be stored in data with the name of [new_environment]
.
python3 plb.algorithms.solve --env_name [EnvName-version] --exp_name [EnvName-version] --exp_name learn_latent --lr 1e-5
The encoder weight will be saved in pretrained_model